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Abstract

In this study, antibody microarrays on a nano-scale
controlled surface were prepared. Aspects of perfor-
mance such as signal intensity, dependence of sig-
nal intensity on target antigen concentration, etc.
were evaluated and compared with those of micro-
arrays on amine, aldehyde, and epoxy surfaces. The
signal intensities of the anti-TNF-αα antibody micro-
array fabricated on the nano-scale controlled surface
were found to be 2-8 times higher than those pre-
pared on the other surfaces. Additionally, the anti-
TNF-αα and anti-IL-1ββ antibody microarrays evidenc-
ed linear correlations between their signal intensities
and concentrations of target antigen applied to the
microarrays in a range between 3.0 nM-1.0 μμM. Fur-
thermore, the antibody microarrays detected two
different antigens simultaneously with similar signal
intensity to those achieved in single antigen detec-
tion experiments.

Keywords: Protein interaction, Protein microarray, Anti-
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Introduction

Recently, a new type of surface as a substrate for
DNA microarrays has been prepared via the self-as-
sembly of conical-shaped dendron molecules on glass
slides1-5. It was determined that a conical-shaped den-
dron provided primary amino groups on a surface
which are separated from each other by an average of
3 nm1. The DNA microarrays fabricated on this nano-
scale controlled surface evidenced enhanced signal
intensity and discrimination efficiency for a variety
of single nucleotide polymorphism types2,3. Addition-

ally, when subjected to the detection of single nucleo-
tide variation of the p53 gene in genomic DNAs ob-
tained from cancer cell lines, the DNA microarrays
clearly discriminated single nucleotide variations in
hotspot codons with high degrees of selectivity and
sensitivity4. 

The outstanding performance of DNA microarrays
fabricated on the nano-scale controlled surface is pro-
foundly related to the novel properties of the dendron
molecule, which features a conical structure that allows
for mesospacing between the capture probes. Micro-
arrays on the dendron-modified surface can reduce
the steric hindrance not only between the solid sur-
face and target DNA, but also among the immobilized
capture probes, thereby rendering the hybridization
process on the surface extremely effective.

Protein is a totally different molecule from DNA.
Proteins are chemically and structurally substantially
more complex and heterogeneous than are DNA mole-
cules, and far more readily lose their conformation
and biochemical activity as the result of denaturation,
dehydration, or oxidation. Therefore, more sophisti-
cated immobilization chemistries are required to
immobilize proteins in active conformations and to
maintain the biochemical properties or activities of
proteins during experimentation using microarrays6-32.

Proteins can be immobilized covalently onto glass
surfaces modified with aldehyde33,34, epoxide35, or
linker-modified amine36 functional groups. The pro-
teins are immobilized on aldehyde surfaces via the
Schiff base reaction between the aldehydes on surface
and the amino groups (lysine residues) on the proteins.
In a similar fashion, the amino groups of proteins react
with the epoxide group on the surface, thereby form-
ing a covalent bond. Such covalent immobilization
approaches result in stronger attachment, but lack
defined orientations of the capture agents on the solid
support. Therefore, maintaining the activity of the
immobilized proteins and low signal intensity are
ongoing problems for the protein microarrays fabri-
cated on these surfaces37-43.

In order to elucidate the characteristics of the nano-
scale controlled surface as a substrate for protein
microarrays, we fabricated antibody microarrays on
the surface. Additionally, properties such as signal
intensity, the relationship between signal intensity and
target antigen concentration, etc. of the microarrays
were compared with those of other surfaces, namely
the amine, aldehyde, and epoxide-modified surfaces.
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Results and Discussion

Preparation of Antibody Microarrays
The nano-scale controlled surface was treated with

the homobifunctional linker, N,N-disuccinimidyl car-
bonate (DSC)5, and capture anti-TNF-α and/or anti-
IL-1β antibodies were subsequently microarrayed on
the DSC-treated surface. The reaction of the amino
group of the nano-scale controlled surface with DSC
generates a succinimidyl surface which can form a
covalent bond in aqueous solution with the amino
group of the capture antibody to generate the antibody-
modified surface. On the other hand, antibody micro-
arrays on the amine, aldehyde, and epoxy surfaces
were prepared via the direct spotting of capture anti-
bodies onto the surfaces in accordance with the sup-
plier’s recommended protocols.

Detection Strategies for Protein Microarray
In an effort to detect the protein interaction between

the capture antibody immobilized on the surface and
the incoming target antigen, we employed a four-
component sandwich assay, as is shown in Figure 2.

The sandwich assay has evolved directly from the
radioimmunoassay or ELISA protocols in which they
are extensively employed. The sandwich assay for-
mat relies on immobilized antibodies to capture the
protein of interest (antigens), whereas a second label-
ed antibody directed against the captured protein and
the reporter molecule (which can bind specifically to
the detection antibody) are utilized for detection. In
this approach, two distinct antibodies, each with affi-
nity to separate epitopes on the protein of interest, are
required. The binding events between the capture anti-
bodies and antigens were detected via sequential incu-
bation with the detection antibody labeled with biotin
and with streptavidin labeled with Cy5 (streptavidin-
Cy5, reporter molecule).

Properties of Antibody Microarrays 
In order to evaluate the signal intensities of micro-

arrays fabricated on four different kinds of surfaces,
anti-TNF-α antibody was microarrayed twice in a 2
×5 format. 300 nM of TNF-α antigen was applied to
the microarrays. As is shown in Figure 3, the signal
intensities of spots on the nano-scale controlled sur-
faces were 2-8 times higher than those on the other
surfaces. At other concentrations of TNF-α antigen,
similar results were observed. These findings indicate
that substantially more TNF-α antigens were captured
by the anti-TNF-α antibodies immobilized on the
nano-scale controlled surface than on the other sur-
faces. This is an interesting result, considering that the
density of the surface functional group of the nano-
scale controlled surface is only 1/100 of those on the
other surfaces44,45. As the number of functional groups
on the surface decreases, the amount of captured anti-
bodies immobilized also decreases. Therefore, the
higher intensity of the microarray fabricated on the
nano-scale controlled surface originates not from the
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Figure 1. Schematic drawing of nano-scale controlled
surface. The surface was generated via the self-assembly
of conical-shaped dendron molecules on glass slides.

Figure 2. Scheme of the four-component sandwich assay used in antibody microarray detection. ① Blocking, ②Washing,
③ Target protein, ④Washing, ⑤ Detection antibody, ⑥Washing, ⑦ Reporter molecule, ⑧Washing and drying, ⑨ Scanning
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quantity of bound antibodies but rather is a consequ-
ence of the quantity of bound antibodies in active form.
This result indicates that the nano-scale controlled
surface is capable of maintaining the activity of pro-
teins immobilized on the surface.

Correlation between Fluorescence Intensity
and Concentration of the Target Antigen 

In order to elucidate the correlation between fluo-
rescence intensity and target antigen concentration,
the solution of a capture antibody of anti-TNF-α (1.0
×10-5 M) was microarrayed on DSC-modified den-
dron surfaces. The prepared antibody microarray was
then permitted to react with TNF-α antigen at a varie-
ty of concentrations-for example, 3.0 nM, 10 nM, 100

nM, 300 nM, and 1.0 μM. After rinsing with washing
buffer, the microarray was permitted to react with
detection antibody sequentially labeled with biotin
and streptavidin-Cy5. As is shown in Figure 4, the
fluorescence intensity increased with the concentra-
tion of target antigen in a range of 3 nM-1.0 μM. This
finding indicates that the antibody microarrays fabri-
cated on the nano-scale controlled surface might be
employed to detect nanomolar concentrations of tar-
get antigen.

Both the anti-TNF-α and anti-IL-1β antibodies were
spotted on the same nano-scale controlled surface in
a 2×5 format, respectively. The prepared microarrays
were then treated with a mixture of TNF-α and IL-1β
antigens. As is shown in Figure 5, the fluorescence
intensities obtained from the simultaneous detection
of two different antigens, TNF-α and IL-1β, were
similar to those acquired from the single antigen de-
tection experiment. This result indicates that the anti-
body microarrays fabricated on the nano-scale con-
trolled surface can selectively detect the target antigen,
without sacrificing its binding ability.
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Figure 3. Fluorescence signals obtained from anti-TNF-
α antibody microarrays fabricated on (a) nano-scale con-
trolled (b) amine (c) aldehyde, and (d) epoxy glass slides.
The concentration of TNF-α target antigen used was 300
nM.

Figure 4. Dependence of signal intensity of antibody
microarrays fabricated on the nano-scale controlled sur-
face on the concentration of target antigen.

(a) (b)

(c) (d)

Figure 5. Fluorescence signals from the simultaneous detection of two different antigens, IL-1β and TNF-α, on the same
microarray (middle). The signal intensities were similar to those obtained from single antigen detection experiments (left
and right).

1L-1β

TNF-α



Conclusions

In this study, the performance of the nano-scale
controlled surface as a substrate for protein microar-
ray was assessed and compared with those of three
other types of glass slides-namely, amine, aldehyde,
or epoxy-modified surfaces. The protein microarrays
fabricated on the nano-scale controlled surface evi-
denced higher signal intensities and more reliable
data than those prepared on the other surfaces. In par-
ticular, the nano-scale controlled surface evidenced
substantially better ability to maintain the activity of
immobilized protein than was noted with the other
surfaces. Therefore, we conclude that the nano-scale
controlled surface assessed herein can be utilized as a
promising surface for protein microarrays.

Materials and Methods

SuperAmine, SuperAldehyde, and SuperEpoxy glass
slides were purchased from ArrayIt (USA) and NSB
amine (dendron-modified) slides from NSBPOSTECH
(Korea). The protein microarrays on the above slides
were prepared in accordance with the supplier’s recom-
mendations. Streptavidin-Cy5, monoclonal anti-TNF-
α, and anti-IL-1β antibodies were purchased from
Sigma (St. Louis, MO). Solutions of TNF-α and IL-
1β antigens were allowed to react with the antibody
microarrays for 3 hours. After washing with washing
buffer, the microarrays were sequentially treated with
detection antibody labeled with biotin and washed
again with streptavidin labeled with Cy5. The fluo-
rescence signal of the microarray was measured using
ScanArray Lite (GSI Lumonics).
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